
PLDI: U: Translation Validation of Thread-Level
Parallelizing Transformations using Color Petri Nets

Abstract
Software applications often require the transformation of an
input source program into a translated one for optimization.
In this process, preserving the semantics across the transfor-
mation also called equivalence checking is essential. In this
paper, we present ongoing work on a novel translation vali-
dation technique for handling loop transformations such as
loop swapping and distribution, which cannot be handled by
state-of-the-art equivalence checkers. The method makes use
of a reduced size Petri net model integrating SMT solvers for
validating arithmetic transformations. The approach is illus-
trated with two simple programs and further validated with a
programs benchmark.

Keywords: Translation Validation, Equivalence Checking, Color
Petri Net, Z3 Theorem Prover

1 INTRODUCTION
Software applications often require the transformation of an in-
put source program into a translated version while preserving
the semantics across the transformation. These translations
are performed to efficiently utilize the intrinsic computer ar-
chitecture, such as multiple cores and vector registers. For
safety-critical systems, these translations need to be formally
validated before they are used, to certify system reliability and
accuracy. Checking the equivalence of the functional behav-
iors of source and translated programs is thus an important
step. This process is called translation validation.
Instruction-level parallelism is one such translation that

is widely used in high level synthesis during the scheduling
phase. Petri nets are a popular modeling paradigm that can
capture and express instruction-level parallelism.

Path-Based Equivalence Checking (PBEC) is a popularmethod
for translation validation, which is based on graphical model-
s/representations of code. Petri net PBEC methods have been
proposed in [14, 16] but they are not able to validate code with
complex arithmetic expressions. CDFG PBEC [9] methods are
not able to validate parallelizing transformations either.

Satisfiability Modulo Theories (SMT) solvers are tools used
to solve constraint satisfaction problems. They are used in ver-
ification as a means of analyzing the symbolic execution and
semantics of programs. Z3 Theorem Prover [2] is an industry-
standard SMT Solver developed by Microsoft Research to solve
such problems.
In this paper, we propose an approach for translation vali-

dation of several loop-involving and parallelizing code trans-
formations. The approach, which is a work-in-progress, has
three major parts: a Petri net model constructor, a Petri net
path constructor, and an equivalence checker which consists
of a path analyzer and the Z3 Theorem Prover.
The major contributions of this paper are as follows:

• Approach to validate several transformations such as
loop swapping and distribution, and parallelizationwhich
cannot be handled by state-of-the-art CDFG-based equiv-
alence checkers.

• Refinement and reduction in size of Petri net model from
that employed in [14], which enhances the efficiency of
the equivalence checking mechanism and helps with
scalability issues.

• Integration of SMT solvers in the approach to check
equivalence between two programs.

This paper is organized as follows: Section 2 presents an
overview of the entire workflow of the approach. Through
a motivating example, the workflow is explained in Section
3. Through a small set of experimentation, we compare our
approach with [14, 15] and other CDFG-based PBEC. Section
4 compares the experimental results with these equivalence
checkers. Section 5 describes the state of the art. We conclude
the paper in Section 6.

2 WORKFLOW

Figure 1. Workflow of proposed approach

ACM, Student Research Competition 2021, Grand Finals

The workflow of the proposed approach is illustrated in
Fig. 1. Initially, a source program 𝑃𝑠 , is subjected to a series
of transformations, that result in a translated program 𝑃𝑡 . In
our approach, we have used Color Petri Net (CPN) as an in-
termediary modeling paradigm. This task is performed by
the Model Constructor module which outputs two CPNs: 𝑁0
and 𝑁1 corresponding to the source and translated programs
respectively.
To formally check behavioral equivalence between pro-

grams, there is a necessity to characterise the computations.
However, in the case of loop(s), the number of loop traversals
is indeterminate. To overcome this computational barrier, we
represent the CPN model computations as a finite set of paths.
This task of extracting the set of paths is performed by Path
Constructor module, which gives the set 𝜋0 from 𝑁0 and 𝜋1
from 𝑁1.

Using the path-cover data, the process of equivalence check-
ing is carried out by the Path-Based Equivalence Checking
(PBEC) module that is composed of the Path Analyzer and Z3
Theorem Prover. The equivalence checking process is dynami-
cally performed by the Path Analyzer module.
This establishment of equivalence (or non-equivalence) of

the characteristics of the two programs (rather, their corre-
sponding path covers) is facilitated by the Z3 Theorem Prover.
To utilize Z3, the Path Analyzer module generates a set of
Z3-compatible input expressions from the path cover data (I0
from 𝜋0 and I1 from 𝜋1), to check for equivalence between
paths.
After all candidate paths have been checked, a ’Yes’ an-

swer from the Path Analyzer implies equivalence while a ‘No’
answer is interpreted as ‘Can’t Say’, since the proposed equiv-
alence checking method is sound but not complete. In the case
of ‘Yes’, the Path Analyzer also outputs the equivalent pairs of
paths from 𝑁0 and 𝑁1.

3 MOTIVATING EXAMPLE

int i=0,a,b,c,d,e,k,l,m,n;

scanf("%f,%f,%f,%f,%f",

&a,&b,&l,&m,&n);

while (i < l) {

m = m * 10;

n = n / 10;

i++;}

c = (a*a*a) - (b*b*b);

d = (a*a) + (b*b) + (a*b)

e = c / d;

k = m + n + e;

Listing 1. The source program
𝑃𝑠

int i=j=0,a,b,e,k,l,m,n;

scanf("%f,%f,%f,%f,%f",

&a,&b,&l,&m,&n);

#parbegin scop

while (i < l) {

m = m * 10;

i++;}

||

while (j < l) {

n = n / 10;

j++;}

#parend scop

e = a - b;

k = m + n + e;

Listing 2. The transformed
program 𝑃𝑡

In this section, we detail the major steps of the equivalence
checking workflow using a simple example source program
𝑃𝑠 and its transformed version 𝑃𝑡 as given in Listings 1 and 2
respectively.

The program 𝑃𝑠 takes five inputs 𝑎, 𝑏, 𝑙 ,𝑚, and 𝑛, and com-
putes the function:

𝑘 = (𝑚 × 10𝑙) + (𝑛 ÷ 10𝑙) + (𝑎 − 𝑏) (1)

The corresponding transformed program 𝑃𝑡 is obtained by
loop distribution followed by thread level parallelizing trans-
formation of 𝑃𝑠 ; the independent sub-expressions𝑚 × 10𝑙 and
𝑛 ÷ 10𝑙 are computed separately in two parallelized loops.

3.1 Model Formalism
A Petri net model 𝑁 , is a bipartite directed graph; one subset
𝑃 , say, of vertices comprises places and the other subset𝑇 , say,
comprises transitions. If there is an arc (𝑝, 𝑡) from a place 𝑝 to a
transition 𝑡 , then 𝑝 is called a pre-place of 𝑡 and the arc is called
in-coming arc of 𝑡 . The set of all pre-places of 𝑡 is denoted as ◦𝑡 .
If there is an arc (𝑡, 𝑝 ′) from a transition 𝑡 to a place 𝑝 ′, then
𝑝 ′ is called a post-place of 𝑡 ; the set of all post-places of 𝑡 is
denoted as 𝑡◦. The arc is called an out-going arc of 𝑡 .
The set 𝑃𝑖𝑛 ⊂ 𝑃 is designated as the set of in-ports of the

model. It comprises all places that are not post-places of any
transition. Similarly, another set 𝑃𝑜𝑢𝑡 ⊂ 𝑃 is called the set of
out-ports, which comprises the places that are not pre-places of
any transition. A place can hold an entity called token. A token
is a set of variable-value pairs that can hold values for program
variables. The marking of a net is a particular distribution of
tokens over the net.

Each out-going arc is associated with a set of functions. This
function-set 𝐹 , say, is a set of arithmetic expressions over (a
subset of) the program variables. Each transition 𝑡 is associated
with a guard condition 𝑔𝑡 , which is a Boolean function over
(a subset of) the program variables. A transition 𝑡 is said to
be enabled when all its pre-places have tokens and they hold
values which satisfy 𝑔𝑡 . Consequent to the firing of an enabled
transition 𝑡 , tokens are removed from all 𝑝 ∈ ◦𝑡 and tokens are
placed in all 𝑝 ∈ 𝑡◦. The value vector of the token(s) in the post-
place(s) depends respectively, on the associated function-set
𝐹 .

Each place 𝑝 ∈ 𝑃 is associated with a vector of program vari-
ables 𝑉𝑝 , say. For places that are in-ports, the vector consists
of no variables. For places that are neither in-ports nor out-
ports, there are two kinds of such variables: changed variables
and unchanged variables. Changed variables are those vari-
ables whose values are changed from when the place was last
marked. Similarly, unchanged variables are those whose values
don’t change. The partition between changed and unchanged
variables for each place, is defined dynamically during the
computations of the Petri net and the same will be illustrated
in the next subsection. Out-ports have no changed variables
in the associated variable vector.

3.2 Model Construction
Using compiler internal infrastructure, the program is trans-
formed into an intermediate representation. This representa-
tion is transformed to a Control Flow Graph (CFG) using the
fdump process of the GCC compiler. The elements of the CFG
are mapped to the Petri net, for which, a rudimentary set of
rules is described in Table 1.

Approach for Translation Validation of Thread-Level Parallelizing Transformations using CPN ACM, Student Research Competition 2021, Grand Finals

Figure 2. CPNmodel 𝑁0 corresponding to the source program
in Listing 1

Figure 3. CPN model 𝑁1 ≡ program in Listing 2

Table 1. Crude CFG-CPN transformation mapping

Control Flow Graph Color Petri net
state place

transition in-coming arc, transition, out-going arc
transition condition guard condition associated with transition
transition function function-set associated with out-going arc

3.3 Notion of Path on CPN Model
In a general program, the number of loop traversals is un-
bounded. Therefore, we cannot characterize the set of compu-
tations. From the classical program verification techniques, we
introduce the concept of paths such that any computation can
be represented in terms of a finite set of paths. To construct the
path, we introduce the notion of 𝑐𝑢𝑡-𝑝𝑜𝑖𝑛𝑡𝑠 . Using cut-points
we ‘cut’ each loop. The notion of cut-points in our CPN model
is as follows:

1. All in-ports, ∀𝑝 ∈ 𝑃𝑖𝑛 , are cut-points.
2. All out-ports, ∀𝑝 ∈ 𝑃𝑜𝑢𝑡 , are cut-points.
3. All places that have back-edges are cut-points.
A path is a sequence of out-going arcs from a set of cut-

points to a cut-point, while having no cut-point in between.
Through the backward cone of foci method, we construct the
paths in the Petri net model. The detailed discussion of the
path construction algorithm is given in [1]. It is to be noted
that if an out-going arc is covered in one path, it need not be
considered in another path.

3.4 Validity of PBEC
To prove the validity of the path-based equivalence checker,
we show that any computation can be represented as a con-
catenation of parallel paths.

As an example, taking the translated model 𝑁1 in Fig. 3, we
can express the computation as follows:

𝜇𝑝′4 = ⟨{𝑝 ′
1}, {𝑝 ′

2, 𝑝
′
3}𝑙+1, {𝑝 ′

4}⟩

We can express the same computation in terms of the se-
quence of transitions that are fired. :

𝜇𝑝′4 = ⟨{𝑡 ′1}, {𝑡 ′2, 𝑡 ′3}𝑙 , {𝑡 ′4}⟩

We can now express the computation in terms of the out-
going arcs. :

𝜇𝑝′4 = ⟨{(𝑡 ′1, 𝑝 ′
2), (𝑡 ′1, 𝑝 ′

3)}, {(𝑡 ′2, 𝑝 ′
2), (𝑡 ′3, 𝑝 ′

3)}𝑙 , {(𝑡 ′4, 𝑝 ′
4)}⟩

The set of paths of𝑁1, 𝜋1 = {𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5}. Initially, 𝜇𝑟𝑝′4 =
𝜙 . The last member of 𝜇𝑝′4 is (𝑡

′
4, 𝑝

′
4). The path 𝛽4 has (𝑡 ′4, 𝑝 ′

4) as
its last member. So 𝛽4 is prepended to 𝜇𝑟𝑝′4 , and all the out-going
arcs in 𝛽4 (only (𝑡 ′4, 𝑝 ′

4)) are removed once from 𝜇𝑝′4 .
Now, the last member of 𝜇𝑝′4 is {(𝑡

′
2, 𝑝

′
2), (𝑡 ′3, 𝑝 ′

3)}. (𝑡 ′2, 𝑝 ′
2) is

the last member of 𝛽3 and (𝑡 ′3, 𝑝 ′
3) is the last member of 𝛽5. So

{𝛽3 | |𝛽5} is prepended to 𝜇𝑟𝑝′4 and all the out-going arcs from 𝛽3

and 𝛽5 are removed once from 𝜇𝑝′4 . This step will be repeated
𝑙−1 times until the only element left in 𝜇𝑝′4 is {(𝑡

′
1, 𝑝

′
2), (𝑡 ′1, 𝑝 ′

3)}.
Since (𝑡 ′1, 𝑝 ′

2) is the last element of 𝛽1 and (𝑡 ′1, 𝑝 ′
3) is the last

element of 𝛽2, {𝛽1 | |𝛽2} is prepended to 𝜇𝑟
𝑝′4
. The algorithm is

ACM, Student Research Competition 2021, Grand Finals

now terminated since 𝜇𝑝′4 is empty. Therefore

𝜇𝑟
𝑝′4

= ⟨{𝛽1 | |𝛽2}, {𝛽3 | |𝛽5}𝑙 , {𝛽4}⟩

3.5 Equivalence Checking Mechanism
There are two entities associated with every path

1. Condition of execution, 𝑅𝛼 , which is associated with the
guard conditions 𝑔𝑡 .

2. Data transformation, 𝑟𝛼 , which is associated with the
function-sets 𝐹 .

Two paths 𝛼 and 𝛽 are considered equivalent when 𝑅𝛼 ≃ 𝑅𝛽

and 𝑟𝛼 = 𝑟𝛽 . The equivalence checking mechanism is based
on the principle: “∀ 𝛼 ∈ 𝜋0, ∃ 𝛽 ∈ 𝜋1 and ∀ 𝛽 ∈ 𝜋1, ∃ 𝛼 ∈ 𝜋0
| 𝛼 ≃ 𝛽 =⇒ 𝜋0 ≃ 𝜋1 =⇒ 𝑁0 ≃ 𝑁1". During checking, the
algorithm constructs correspondence relationships between
the places, variables, and transitions, respectively. To check
two arithmetic or logical expressions, we integrate the Z3 The-
orem Prover with the equivalence checker. Following are the
informal algorithmic steps for checking equivalence between
𝑁0 and 𝑁1:

In our motivating example, the set of paths in 𝑁0 and 𝑁1 are
{𝛼1, 𝛼2, 𝛼3} and {𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5} respectively. Also, 𝑅𝛼1 = 𝑔𝑡1 ,
𝑅𝛼2 = 𝑔𝑡2 , 𝑅𝛼3 = 𝑔𝑡3 and 𝑟𝛼1 = 𝐹1, 𝑟𝛼2 = 𝐹2, 𝑟𝛼3 = 𝐹3. Similarly,
𝑅𝛽1 = 𝑅𝛽2 = 𝑔𝑡 ′1 , 𝑅𝛽3 = 𝑔𝑡 ′2 , 𝑅𝛽4 = 𝑔𝑡 ′4 , 𝑅𝛽5 = 𝑔𝑡 ′3 and 𝑟𝛽1 = 𝐹 ′

1,
𝑟𝛽2 = 𝐹 ′

2, 𝑟𝛽3 = 𝐹 ′
3, 𝑟𝛽4 = 𝐹 ′

5, 𝑟𝛽5 = 𝐹 ′
4.

Step 1) Taking the first element of 𝜋0, i.e. 𝛼1, we look at
its pre-place 𝑝1. Places 𝑝1 and 𝑝 ′

1 correspond to each other
since they are in-ports. Since 𝑝 ′

1 is a pre-place for paths 𝛽1
and 𝛽2, these two paths are candidate paths for 𝛼1. The SMT
solver tells us that 𝑅𝛼1 ≃ 𝑅𝛽1 (i.e. 𝑔𝑡1 = 𝑔𝑡 ′1) and 𝑅𝛼1 ≃ 𝑅𝛽2

(i.e. 𝑔𝑡1 = 𝑔𝑡 ′2). The SMT solver also tells us that 𝑟𝛼1 = 𝑟𝛽1 (i.e.
𝐹1 = 𝐹 ′

1) and 𝑟𝛼1 = 𝑟𝛽2 (i.e. 𝐹1 = 𝐹 ′
2). Hence, 𝛼1 ≃ 𝛽1 and 𝛼1 ≃ 𝛽2.

From this information we also infer that the post-places of
these paths correspond to each other, i.e. 𝑝2 corresponds to 𝑝 ′

2
and 𝑝 ′

3.
Step 2) Taking the next element of 𝜋0 i.e. 𝛼2. The pre-place

of 𝛼2 is 𝑝2, which corresponds to 𝑝 ′
2 and 𝑝 ′

3. Since 𝛽3 and 𝛽5
have the two places respectively as their pre-place, they are
candidate paths for 𝛼2. Checking for equivalence between
these paths results in a ‘No’ answer from the SMT solver. So,
we go for path extension. The paths 𝛽3 and 𝛽5 can be merged
parallelly, due to place, variable, and transition correspondence
. The SMT solver tells us that 𝑅𝛼2 ≃ 𝑅𝛽3 ∥𝛽5 . Similarly, 𝑟𝛼2 =

𝑟𝛽3 ∥𝛽5 . Hence, 𝛼2 ≃ (𝛽3 ∥ 𝛽5).
Step 3) Finally, taking the path 𝛼3, it’s pre-place is 𝑝2 which

has correspondence to 𝑝 ′
2 and 𝑝 ′

3, which are the pre-places
of 𝛽4. Similarly, the post-place of 𝛼3 corresponds to the post-
place of 𝛽4 since they are out-ports in their respective nets.
Hence, 𝛽4 is a candidate path for 𝛼3. The SMT solver tells us
that 𝑅𝛼3 ≃ 𝑅𝛽4 and 𝑟𝛼3 = 𝑟𝛽4 . Hence, 𝛼3 ≃ 𝛽4. So,

𝛼1 ≃ 𝛽1,𝛽2 ; 𝛼2 ≃ {𝛽3 ∥ 𝛽5} ; 𝛼3 ≃ 𝛽4

Since “∀ 𝛼 ∈ 𝜋0 ∃ 𝛽 ∈ 𝜋1 | 𝛼 ≃ 𝛽 =⇒ 𝜋0 ≃ 𝜋1 =⇒
𝑁0 ≃ 𝑁1". That is, the programs in Listing 1 and Listing 2 are
semantically equivalent.

3.5.1 Z3 Theorem Prover. For two candidate paths 𝛼 and
𝛽 , the Z3 Theorem Prover (Z3) receives the conditions of

execution, 𝑅𝛼 and 𝑅𝛽 , and the data transformation, 𝑟𝛼 and
𝑟𝛽 , from the path analyzer. All the program statements are
encoded as Static Single Assignments to preserve the order
of execution. The sub-scripts ‘_s’ and ‘_t’ are appended for
variables of 𝑃𝑠 and 𝑃𝑡 respectively. The input to Z3 consists of:

1. Variables and corresponding type declarations.
2. Functions in the form of assert statements
3. Test statements asserted as negations. Z3 returns a sat

(true) answer if it finds even one case (from the entire
model space) that satisfies equivalence. Using the nega-
tion, we can test that equality is satisfied over the entire
model space. Mathematically: for 𝜉 (the model space)
and 𝑐 (the cases), by De Morgan’s Law, ¬(⋃

𝑐∈𝜉
𝑐) = ⋂

𝑐∈𝜉
¬𝑐 .

So, an unsat output from Z3 actually corresponds to equiv-
alence and a sat output implies non-equivalence. Also, the
test statements check for equality only between the common
variables of 𝑃𝑠 and 𝑃𝑡 . In case of multiple assignment of the
same variable, only the last executed variable is considered
(i.e. the variable with highest numerical suffix).

As an example, in Step 3) for checking equivalence between
𝑅𝛼3 and 𝑅𝛽4 , the Z3 input is as follows:

1(declare -const g_t3_s Bool) (declare -const l_t Int)

2(declare -const g_t4_t Bool) (declare -const l_s Int)

3(declare -const i_0_s Int) (declare -const j_0_t Int)

4(declare -const i_0_t Int)

5(assert (= g_t3_s(>= i_0_s l_s)))

6(assert (= g_t4_t(and(>= i_0_t l_t)(>= j_0_t l_t))))

7(assert (= l_s l_t)) (assert (= i_0_t j_0_t))

8(assert (= i_0_s i_0_t))

9(assert (not(= g_t3_s g_t4_t)))

10(check -sat)

Listing 3. Checking equivalence of 𝑅𝛼3 and 𝑅𝛽4

In Listing 3, lines 1-4 define the guard conditions as Boolean
functions and define the associated variables. Lines 5-6 define
𝑔𝑡3_𝑠 = 𝑖 ≥ 𝑙 and 𝑔𝑡4_𝑡 = 𝑖 ≥ 𝑙 & 𝑗 ≥ 𝑙 . To facilitate equiv-
alence checking, equivalence between variables is asserted
in lines 7-8. 𝑖_0_𝑡 = 𝑖_0_𝑠 is infered from 𝐹 ′

1 and 𝐹 ′
2. Line 9

is the assert statement for equivalence checking defined as
a negation. In the last line we check equivalence. Z3 returns
unsat which implies 𝑅𝛼3 = 𝑅𝛽4 .

4 EXPERIMENTAL RESULTS
We manually tested our equivalence checking algorithm on
five examples, where parallelising transformations are applied
using Pluto [18] and Par4All [11] compilers. The programs
and their descriptions can be found in [1].
Table 2 presents a comparative study of the model size of

our proposed approach with the models of two other Petri
net-based equivalence checking tools ST-1 [15] and ST-2 [14].
It is to be noted that the model size of the current method is
comparable with ST-2.

Table 3, presents transformation verification capabilities of
the proposed approach, compared with ST-1, ST-2 and two
CDFG (Control Data Flow Graph) based PBEC namely, FSMD-
VP (FSMDwith Value Propagation) [10] and FSMD-EVP (FSMD
with Extended Value Propagation) [13]. It is to be noted that

Approach for Translation Validation of Thread-Level Parallelizing Transformations using CPN ACM, Student Research Competition 2021, Grand Finals

Table 2. Model size for different Petri-net PBEC

Example ST-1 ST-2 Proposed
p t p t p t

BCM 34 28 6 6 3 2
MINMAX 31 27 7 7 4 6
PETERSON 11 9 4 2 6 8
DEKKERS 19 14 6 4 6 8
LUP 28 21 6 4 10 16

Table 3. Capabilities of different PBEC

Example FSMD-VP FSMD-EVP ST-1 ST-2 Proposed
BCM X X X X ✓
MINMAX X X ✓ ✓ ✓
PETERSON X X X X ✓
DEKKERS X X X X ✓
LUP X X ✓ ✓ ✓

both FSMD based PBEC cannot handle the parallelizing trans-
formations because FSMD is a sequential model of computa-
tion. ST-1 and ST-2 cannot handle arithmetic transformations.
They have their own normalizer, which are their limitations.
These limitations are overcome by Z3.

5 RELATEDWORK
Translation validation was introduced in [4] and was demon-
strated in [20] and [12]. The approach was enhanced in [17].
All these techniques are bisimulation based methods. A bisim-
ulation method for parallel programs is reported in [19].
Another equivalence checking method is the inductive-

inferencing based technique reported in [7]. The method only
works for scalar handing programs.

A major limitation of these methods is that termination is
not guaranteed. To alleviate this shortcoming, a path based
equivalence checker for the FSMD model was proposed for
uniform and non-uniform code motions, code motion across
loop and loop invariant code optimizations in [6, 10, 13]. How-
ever, they cannot handle loop swapping transformations and
many thread-level parallelizing transformations because FS-
MDs cannot capture parallel behaviors easily.
The literature records no significant attempts for devising

formal equivalence checking methods using Petri net based
models. Although, there are several works on property verifi-
cation using Petri net modelling paradigm [3, 5, 8, 21]. In [16],
the validation of loop swapping and thread level parallelising
transformations using Petri nets was reported. The major lim-
itation of this method is it cannot handle loop invariant code
motion as well as polynomial arithmetic transformations. Also,
the model size presents a scalability issue. To over come the
limitations, a modification in the model construction an equiv-
alence checking was reported in [14]. However, the method
cannot handle polynomial arithmetic transformations.

6 CONCLUSION
In this paper we presented our ongoing work on developing
an approach to check the equivalence of software programs
using a novel translation validation technique for handling

loops. In addition, our approach makes use of SMT solvers to
validate arithmetic transformations. Such constructions cannot
be handled by state-of-the-art equivalence checkers.

We presented an initial validation of the approach for a stan-
dard benchmark. Currently this validationwas performedman-
ually. Therefore, our future work is to implement a tool-chain
supporting the approach and validate it on a larger benchmark.
For this, we will reuse existing compiler front-ends (e.g. GCC)
and automatically construct the Petri Net models from the gen-
erated intermediate code representation so that the approach
can be tested on different programming languages, potentially
including existing architecture description languages such as
UML, SysML and AADL. This will also allow us to further
characterize the domain of applicability of the approach; i.e.
which language constructions and translations are handled by
our approach and to evaluate scalability for large programs.

Acknowledgments
To Soumyadip and Dominique, for being amazing guides.

References
[1] Soumyadip Bandyopadhyay. 2016. Path based equivalence checking of

Petri net representation of programs for translation validation. Ph.D. Dis-
sertation. IIT, Kharagpur.

[2] Leonardo de Moura et al. 2008. Z3: An Efficient SMT Solver. In TACAS.
337–340.

[3] Andrea Corradini et al. 2013. A Formal Model for the Deferred Update
Replication Technique. In TGC.

[4] Amir Pnueli et al. 1998. Translation Validation. In TACAS.
[5] Bernadette Charron-Bost et al. 2013. Formal Verification of Distributed

Algorithms (Dagstuhl Seminar 13141). Dagstuhl Reports 3, 4 (2013), 1–16.
[6] Chandan Karfa et al. 2012. Formal verification of code motion techniques

using data-flow-driven equivalence checking. ACM TODAES 17, 3 (2012).
[7] Dennis Felsing et al. 2014. Automating regression verification. In

ACM/IEEE International Conference on ASE.
[8] Didier Lime et al. 2009. Romeo: A Parametric Model-Checker for Petri

Nets with Stopwatches. In TACAS.
[9] Kunal Banerjee et al. 2014. Extending the FSMD Framework for Vali-

dating Code Motions of Array-Handling Programs. IEEE TCAD 33, 12
(2014).

[10] Kunal Banerjee et al. 2014. Verification of Code Motion Techniques
Using Value Propagation. IEEE TCAD 33, 8 (2014).

[11] Mehdi Amini et al. 2012. Par4All: From Convex Array Regions to Het-
erogeneous Computing. IMPACT Workshop (05 2012).

[12] Martin Rinard et al. 1999. Credible Compilation. Technical Report MIT-
LCS-TR-776. MIT.

[13] Ramanuj Chouksey et al. 2019. Translation Validation of Code Motion
Transformations Involving Loops. IEEE TCADICS 38, 7 (2019).

[14] Rakshit Mittal et al. 2020. Translation Validation of Loop involving Code
Optimizing Transformations using Petri Net based Models of Programs.
In PNSE Workshop.

[15] Soumyadip Bandyopadhyay et al. 2017. SamaTulyata: An Efficient Path
Based Equivalence Checking Tool. In ATVA.

[16] Soumyadip Bandyopadhyay et al. 2018. Equivalence checking of Petri
net models of programs using static and dynamic cut-points. Acta Infor-
matica (2018).

[17] Sudipta Kundu et al. 2008. Validating High-Level Synthesis (CAV).
[18] Uday Bondhugula et al. 2008. PLuTo: A practical and fully automatic

polyhedral program optimization system. In PLDI.
[19] Robin Milner. 1989. Communication and Concurrency. Prentice-Hall, Inc.
[20] George Necula. 2000. Translation validation for an optimizing compiler.

In PLDI.
[21] Michael Westergaard. 2012. Verifying Parallel Algorithms and Programs

Using Coloured Petri Nets. Trans. on Petri Nets and Other Models of
Concurrency (2012).

	Abstract
	1 Introduction
	2 Workflow
	3 Motivating Example
	3.1 Model Formalism
	3.2 Model Construction
	3.3 Notion of Path on CPN Model
	3.4 Validity of PBEC
	3.5 Equivalence Checking Mechanism

	4 Experimental Results
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

