Automated diagnosis of <u>Autism Spectrum Disorder</u> condition using <u>shape based features</u> extracted from <u>brainstem</u>

Vaibhav Jain^a, Abirami S^a, Rakshit Mittal^b, Priya Rani^c, Anandh KR^d, Jac Fredo AR^a

^a School of Biomedical Engineering, Indian Institute of Technology (BHU), India.

^bTelecom Paris, Institut Polytechnique de Paris, Palaiseau, France.

^c Applied Artificial Intelligence Institute, Deakin University, Victoria, Australia.

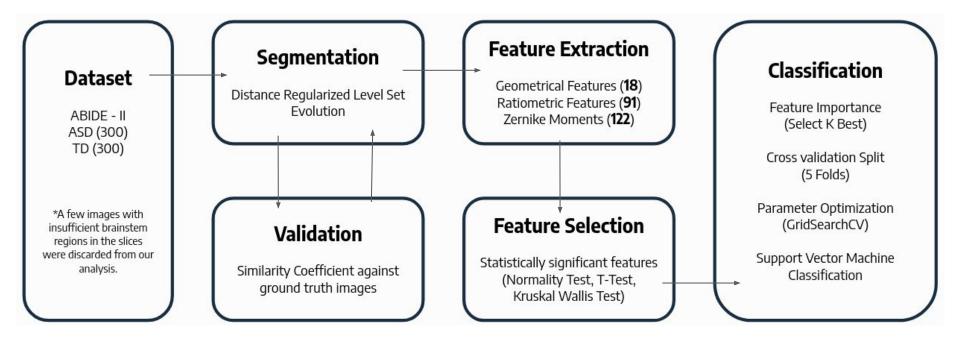
^dThe University of Alabama at Birmingham, United States of America.

Autism Spectrum Disorder (ASD)

- Neurodevelopmental Disorder
- Characterized by significant challenges in
 - Social Interaction
 - Communication
 - Repetitive patterns of behavior

• Mainly controlled by brainstem region

• Anatomical differences in the Brainstem act as an essential biomarker for ASD



Need for diagnostic tool

- Observational assessment
 - medical evaluation,
 - cognitive or developmental testing,
 - language testing,
 - interview of the caregiver
 - medical
 - developmental history
 - report of current behavior and abilities
- Due to its time consuming nature, along with absence of any notable discriminator, the diagnosis of ASD is often delayed.
- Prevents patients from receiving proper and timely interventive care.

Proposed Methodology

Dataset

- Autism Brain Image Data Exchange (ABIDE-I, ABIDE-II)
- Structural Magnetic Resonance Imaging (sMRI)
- Mid-sagittal view slices considered
- Classes:
 - Typically developing (TD)
 - Autism Spectrum Disorder (ASD)
- 300 images considered from each class

Brain-stem Segmentation

• Distance-Regularised Level Set (DRLSE) method used

$$\frac{\delta f}{\delta t} = \mu \left(\mathscr{A}_{p} | \nabla f | \right) + \lambda \delta(f) \left(g \frac{\nabla f}{|\nabla f|} \right) + \alpha g \delta(f)$$

- Gradient flow equation solved
 - \bigcirc g = gaussian gradient used for edge detection (to avoid leakage of contours)
 - 0 α=1
 - \circ μ =0.2
 - ο λ=0.1
 - \circ number of iterations = 15.
 - Values set empirically.

Brain-stem Segmentation

Similarity measure results:

Ο

- Sokal and Sneath II (SS II)
 - \circ mean correlation = 0.9727

Pearson and Heron II (PH II)

mean correlation = 0.9740

(a, e) Brain Image ASD, TD; corresponding (b, f) Final DRLSE evolved contour; (c, g) Masked brainstem; (d, h) Ground truth binary image of brainstem

Feature Extraction

- Geometric features (18)
 - o area
 - perimeter
 - eccentricity
 - \circ orientation
 - bounding boxes, etc.
- Ratio-metric features (91)
- Zernike moments (122)
 - Various orders and degrees
 - Amplitude (61), Phase (61)

Feature Selection

1. Normality Test

2. t-Test (normal distribution)

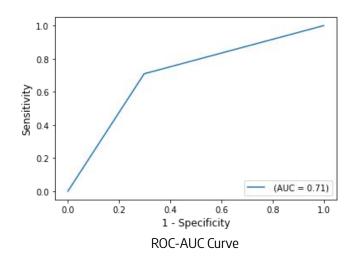
3. Kruskal-Wallis Test (non-normal distribution)

- 4. SelectKBest method (scikit-learn library)
 - a. Ranks based on F-test

Feature Selection

- 59 geometric features significant
 - Eccentricity/Perimeter (ratio-metric)
 - Area/Perimeter (ratio-metric)
 - Minor Axis Length
 - Centroid2/Convex Area (ratio-metric)
 - Convex Area
- 32 Zernike moments significant
 - n 7 m 3 A_{OH}
 - n 12 m 8 A_{OH}
 - \circ n 17 m 7 A_{OH}
 - \circ n 7 m 3 A_{OH}
 - \circ n 7 m 3 A_{OH}

Classification


Linear Kernel	58.92%
Polynomial Kernel	57.39%
Sigmoidal Kernel	70.53%
RBF Kernel	60%

- Support Vector Machine (SVM) classifier used with different kernels
- Sigmoidal kernel gives best results
- 4 folds for training, 1 fold for testing

Classification

- Accuracy: 0.7053
- Sensitivity: 0.6964
- Specificity: 0.7142
- F1 Score: 0.7027
- Area Under Curve: 0.71

