
Installing the tool:
OpenModelica Connection Editor (OMEdit)

Download from:
https://openmodelica.org/#

Download the tutorial package from the handout website!!!!

mem4csd.telecom-paristech.fr
go to Training Schools > Summer School 2024 > OpenModelica

https://mem4csd.telecom

Modeling a Cruise Control System using OpenModelica
and

Verifying Safety Requirements using UPPAAL

Rakshit Mittal1, Hans Vangheluwe1, Rizwan Parveen2

1University of Antwerp – Flanders Make, Belgium

2Telecom Paris, France

2 hands-on tutorials with foundations in Multi-Paradigm Modeling

Case Study: Adaptive Cruise Control System (ACCS)

1a: Modeling the ACCS using OpenModelica

1b: Verifying ACCS Safety Requirements using UPPAAL

2a: Modeling and Analyzing the Architecture of the ACCS
controller using AADL

2b: Synthesizing Code for the ACCS controller using RAMSES
Dominique Blouin2, Anish Bhobe3

Rakshit Mittal1, Hans Vangheluwe1

Rizwan Parveen2

Dominique Blouin2, Anish Bhobe3

1University of Antwerp – Flanders Make, Belgium

2Telecom Paris, France

3Institut Polytechnique de Paris, France

Increasing Systems Complexity

Non-Linear Development Effort Increase

Paradigm Shift: Model-Based Systems
Engineering (MBSE)

• From natural language documents to models.

• Provide common vocabulary.

• Enforce more precision.

• Allow building tools to process specifications
(models).

• Allow detecting errors / inconsistencies early with
these tools.

• Quite effective for avionics development (> 25 %
costs reduction).

Multi-Paradigm Modeling for Cyber-Physical Systems

and Dominique is the bishop!

mpm4cps.eu

Hans is the pope

Case-Study

Adaptive Cruise Control System

The actual robot that you are going to use.

2 hands-on tutorials with foundations in Multi-Paradigm Modeling

Case Study: Adaptive Cruise Control System (ACCS)

1a: Modeling the ACCS using OpenModelica

1b: Verifying ACCS Safety Requirements using UPPAAL

2a: Modeling and Analyzing the Architecture of the ACCS
controller using AADL

2b: Synthesizing Code for the ACCS controller using RAMSES
Dominique Blouin2, Anish Bhobe3

Rakshit Mittal1, Hans Vangheluwe1

Rizwan Parveen2

Dominique Blouin2, Anish Bhobe3

1University of Antwerp – Flanders Make, Belgium

2Telecom Paris, France

3Institut Polytechnique de Paris, France

Multi-Domain

Modeling

this slide from Peter Fritzson's Modelica tutorial

http://www.modelica.org

http://www.modelica.org/

Acausal model

(Modelica)

Causal

block-based

model

(Simulink)

Keeps the physical

structure

Visual Acausal

Hierarchical

Component

Modeling

Multi-Domain

Modeling

this slide from Peter Fritzson's Modelica tutorial

Fritzson P. (2020) Modelica: Equation-Based, Object-Oriented Modelling of Physical Systems.

In: Carreira P., Amaral V., Vangheluwe H. (eds) Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems. Springer, Cham.
https://doi.org/10.1007/978-3-030-43946-0_3

https://mbe.modelica.university/

https://modelica.org/documents/ModelicaTutorial14.pdf

https://openmodelica.org/

https://doi.org/10.1007/978-3-030-43946-0_3
https://mbe.modelica.university/
https://modelica.org/documents/ModelicaTutorial14.pdf
https://openmodelica.org/

The tool:
OpenModelica Connection Editor (OMEdit)

Download the tool from:
https://openmodelica.org/#

The resources:
download from
https://nextcloud.rakshitmittal.net/s/iY4qRkgkW9yx8WB

or request a pen-drive!

https://openmodelica.org/
https://nextcloud.rakshitmittal.net/s/iY4qRkgkW9yx8WB

● Programming: procedural code (function/algorithm)
● Equation-based (a-causal) modelling
● Behind the scenes: numerical approximations
● Object-Oriented modelling
● Libraries and the MSL
● Controller Modelling
● Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

● Programming: procedural code (function/algorithm)
● Equation-based (a-causal) modelling
● Behind the scenes: numerical approximations
● Object-Oriented modelling
● Libraries and the MSL
● Controller Modelling
● Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

The motor should not move too fast!
So the input to the motor controller is limited to [-300, 300].
Simulate the function using the test-bed. Modify the
parameters and observe simulation output.

5
mins

● Programming: procedural code (function/algorithm)
● Equation-based (a-causal) modelling
● Behind the scenes: numerical approximations
● Object-Oriented modelling
● Libraries and the MSL
● Controller Modelling
● Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

The position of the lead car can be described by differential equations.
Three different kinds are already provided.
Simulate them, and then also create your own custommodel!

10
mins

● Programming: procedural code (function/algorithm)
● Equation-based (a-causal) modelling
● Behind the scenes: numerical approximations
● Object-Oriented modelling
● Libraries and the MSL
● Controller Modelling
● Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

Simulate the harmonic equation with different settings:

Simulation 1
solver : dassl
stop-time: 20 s
step-size : 0.02 s

Simulation 2
solver : euler
stop-time: 20 s
step-size : 0.5 s

10
mins

Which simulation is correct?

Notice the numerical in/stability.
Stability => The parametric plot should be bounded.

So, it not just about having the correct model, but also using the correct solver settings!

● Programming: procedural code (function/algorithm)
● Equation-based (a-causal) modelling
● Behind the scenes: numerical approximations
● Object-Oriented modelling
● Libraries and the MSL
● Controller Modelling
● Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

Object-Orientation: concepts like classes/types, instances, encapsulation, specialization

An exemplar low-pass RC circuit

The meaning is always: a set of Differential Algebraic Equations (DAEs) !!

They are obtained by:
1.a. expanding inheritance
1.b. instantiation
2. flattening hierarchy, construct unique names
3. expanding connect() into equations (across vs. flow)

What is the meaning behind the connections between these re-usable blocks?
How is this meaning extracted?

Recall that we created at least 4 different models.

Can we now extend those models so that they can be re-used
like blocks in the Modelica graphical syntax?

As an example, you will find (in part 3) the corresponding blocks for the four
models from the previous parts of the tutorial.

You should look at the textual syntax of the models, and then use
similar techniques to make the block for your custom model, that
you created in part 2.

15
mins

● Programming: procedural code (function/algorithm)
● Equation-based (a-causal) modelling
● Behind the scenes: numerical approximations
● Object-Oriented modelling
● Libraries and the MSL
● Controller Modelling
● Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

MSL - Standard Library

● Programming: procedural code (function/algorithm)
● Equation-based (a-causal) modelling
● Behind the scenes: numerical approximations
● Object-Oriented modelling
● Libraries and the MSL
● Controller Modelling
● Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

PID Controller

Closed-loop system: better stability

https://www.wattco.com/2024/05/pid-controller-explained/

P control by itself is unable to get rid of the steady-state error, which results in a permanent offset.

The steady-state error is eliminated by the integral component, which gradually accumulates the error and modifies the
controller’s output. However, it may result in instability and oscillations from excessive integral activity.

The derivative component forecasts the inaccuracy in the future. By increasing the derivative gain (Kd) by the error’s
derivative over time, it produces a damping effect. By doing this, the response is smoothed down and oscillations and
overshoot are lessened.

rem.
time

Given what you have learnt today, and considering that all blocks are provided.
Can you now make the following PID control loop model of the robot to
simulate its behavior?

rem.
time

What are the best values for Kp, Ki, Kd ??

Remember these values, you will use them in the 2nd tutorial !

● Programming: procedural code (function/algorithm)
● Equation-based (a-causal) modelling
● Behind the scenes: numerical approximations
● Object-Oriented modelling
● Libraries and the MSL
● Controller Modelling
● Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

Body

Controller

Env.Overture
[1]

[3]

[2]

Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, Hans Vangheluwe
Co-Simulation: A Survey. ACM Comput. Surv.51(3): 49:1-49:33 (2018)

problem: full-system analysis

aka co-simulation

solution: combine sub-system simulators

(also when IP protected)

https://dblp.uni-trier.de/pers/hd/t/Thule:Casper
https://dblp.uni-trier.de/pers/hd/b/Broman:David
https://dblp.uni-trier.de/pers/hd/l/Larsen:Peter_Gorm
https://dblp.uni-trier.de/pers/hd/v/Vangheluwe:Hans
https://dblp.uni-trier.de/db/journals/csur/csur51.html#GomesTBLV18

Control
Simulator

Model

Controller

Solver
Body Simulator

SolverModel

Body

Env. Simulator

SolverModel

Env.

Body

Controller

Env.Overture

co-simulation: how? (when IP protected)

Body Simulator

Model Solver

Body

Env. Simulator

Model Solver

Env.

Orchestrator / Master

Body Simulator

Sensor&Control
Simulator

Env. Simulator

Control
Simulator

Model

Controller

Solver

co-simulation: how? (when IP protected)

Minimally, Constrained Stable Switched Systems and Application to Co-Simulation
C Gomes, RM Jungers, B Legat, H Vangheluwe 2018
IEEE Conference on Decision and Control (CDC), 5676-5681

Solver
Master algorithm

javascript:void(0)

Martin Otter and Hilding Elmquist.
The DSblock interface for exchanging model components. Eurosim '95 Simulation Congress. pp. 505- 510. 1995.

Henk Vanhooren, Jurgen Meirlaen, Youri Amerlinck, Filip Claeys, Hans Vangheluwe, and Peter A. Vanrolleghem.
WEST: Modelling biological wastewater treatment. Journal of Hydroinformatics , 5(1):27--50, 2003.

DSblock

MSL-EXEC

Model-Solver Interface

Simulator-Environment Interface

https://fmi-standard.org/

https://fmi-standard.org/

t := t + H
…

…

Co-simulation: how?
Orchestrator

Body Simulator

● Control

Simulator

Env.

Simulator

simulateUntil(t+H,…)

getOutput(…)

setInput(…)

simulateUntil(t+H,…)

getOutput(…)

setInput(…)

simulateUntil(t+H,…)

● Control

Simulator Body Simulator Env. Simulator

Gu, B., & Asada, H. H. (2001). Co-simulation of algebraically coupled dynamic subsystems. In American Control

Conference, 2001. Proceedings of the 2001 (Vol. 3, pp. 2273–2278 vol.3).

http://doi.org/10.1109/ACC.2001.946089

2 hands-on tutorials with foundations in Multi-Paradigm Modeling

Case Study: Adaptive Cruise Control System (ACCS)

1a: Modeling the ACCS using OpenModelica

1b: Verifying ACCS Safety Requirements using UPPAAL

2a: Modeling and Analyzing the Architecture of the ACCS
controller using AADL

2b: Synthesizing Code for the ACCS controller using RAMSES
Dominique Blouin2, Anish Bhobe3

Rakshit Mittal1, Hans Vangheluwe1

Rizwan Parveen2

Dominique Blouin2, Anish Bhobe3

1University of Antwerp – Flanders Make, Belgium

2Telecom Paris, France

3Institut Polytechnique de Paris, France

