Installing the tool:
OpenModelica Connection Editor (OMEdit)

OMEdit - OpenModelica Connectien Editor

Data Reconciliation Tools

File Edit Vview SSP Simulation

ERg B=l~

Libraries ¢ X

Sensitivity Optimization Debug Help

Filter Classes |6z 4z @ fil OMEdit - OpenModelica Connection Editor

? |E OpenModelica

> Modelicaservi .
oo eameneEs Recent Files Latest News & Events

? n Complex

> 7?7 Modelica Mo recent files found.

£» 2024-05-20 Openmodelica v1.23.0-dev.beta.1 released! [
> |E CPSloTPackage
£» 2024-03-12 American Modelica Conference 20241

=L oo L o

Clear Recent Files Reload For more details visit our website www.openmodelica.org

Messages ¢ X

All Notifications ~ Warnings Errors

[1] 14:58:52 Scripting Notification
Automatically loaded package Complex 4.0.0 due to uses annotation from Modelica. ‘ ‘

[2] 14:58:52 Scripting Notification
Automaticallv loaded packace ModelicaServices 4.0.0 due to uses annotation from Modelica.

& welcome | of Meodeling = Plotting " 4 Debugging

Download from:
https://openmodelica.org/#

OMEdit..

b | 5

TELECOM

Paris

B

‘2 IP PARIS

Download the tutorial package from the handout website!!!!

memdacsd.telecom-paristech.fr

go to Training Schools > Summer School 2024 > OpenModelica

https://mem4csd.telecom

Modeling a Cruise Control System using OpenModelica
and
Verifying Safety Requirements using UPPAAL

Rakshit Mittal!, Hans Vangheluwe?!, Rizwan Parveen?

lUniversity of Antwerp — Flanders Make, Belgium

2Telecom Paris, France

TELECOM
Paris

U_ .74 i |
@ IP PARIS

2 hands-on tutorials with foundations in Multi-Paradigm Modeling

Case Study: Adaptive Cruise Control System (ACCS)

1a: Modeling the ACCS using OpenModelica

Rakshit Mittal!, Hans Vangheluwe!

1b: Verifying ACCS Safety Requirements using UPPAAL

Rizwan Parveen?

2a: Modeling and Analyzing the Architecture of the ACCS
controller usin%3AADL

Dominique Blouin?, Anish Bh

2b: Synthesizing Code for the ACCS controller using RAMSES

Dominique Blouin?, Anish Bhobe3

lUniversity of Antwerp — Flanders Make, Belgium TELELON

2Telecom Paris, France u e |
W5 1P PARIS

3Institut Polytechnique de Paris, France =

Increasing Systems Complexity

Airbus data source:).P. Potocki de Montalk, Computer

Estimated Onboard SLOC Growth Software in Civil Aircraft, 6™ Annual Conference on

Software Assurance, (COMPASS 1991)
Boeing data source: JJ. Chilenski, 2009.

3

—
-]

-
o

—
F=

Ln(Onboard SLOC)
]

—
=

1960 1970 1980 1990 2000 010 (2020)

Year
Source: Feiler, Hansson, de Niz and Wrage. “System Architecture Virtual Integration: An Industrial Case SI

Non-Linear Development Effort Increase

A400M

B F35SLOC/F16 SLOC~ 175
B F35 Effort / F16 Effort ~ 300

Source: SAVI Project (https://savi.avsi.aero/)

B A400M:
Over 10 years delayed.
« 6.2 billion euros over budget (30% overrun).
Source: https://www.rt.com/business/airbus-a400m-france-delays-561/

Paradigm Shift: Model-Based Systems
Engineering (MBSE)

« From natural language documents to models.

* Provide common vocabulary. @;ent Based] [Model-Based]

« Enforce more precision. \,
 Allow building tools to process specifications f” j i°° o2 ot
(models). — I ﬂ
 Allow detecting errors / inconsistencies early with i% . f
these tools. = j f 3% i‘%

* Quite effective for avionics development (> 25 %
costs reduction).

\'s
ApPProg J-.,’f

et el

;r'!‘ 1Uj ‘Mf 0)f]

TELECOM

Paris

Pieter). Mosterman and Hans Vangheluwe. Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation: Transactions
of the Society for Modeling and Simulation International , 80(9):433- 450, September 2004. Special Issue: Grand Challenges for ﬁﬁml
Modeling and Simulation. u W7xa

Multi-Paradigm Modeling for Cyber-Physical Systems

mpm4cps.eu

Hans is the pope

and Dominique is the bishop!

TE LEICDM
Yaris

Paulo Carreira - Vasco Amaral - Hans Vangheluwe
Editors

Foundations of
Multi-Paradigm
Modelllng‘for

o mal @ Springer Open

MULTI-PARADIGM MODELLING

APPROACHES FOR
CYBER-PHYSICAL SYSTEMS

BEDIR TEKINERDOGAN, DOMINIQUE BLOUIN,
HANS VANGHELUWE, MIGUEL GOULAQO,
PAULO CARREIRA AND VASCO AMARAL

TELEFDM
2aris

.74 i |

N8 1P PARIS

REALITY

entity

Real-World|

only study behaviour in

experimental context

System S

MODEL

Base
Model

within ﬁ:onteéxt

experiment

Experiment

|

|
within context " i

|

validtation;

Model M

simulate

Model Base
a-priori knowledge

= virtual expeiiment

Observed Data

>

Simulation Results

: Modelling and Simulation
i Process

Bernard P. Zeigler. Multi-faceted Modelling and Discrete-Event Simulation. Academic Press, 1984.

“dris
.74 i |

N8 1P PARIS

disclaimer

* The model need not always be 'conceptual’, and the modelled system

need not always be 'real’

Real Model

Conceptual Model

Real System

Conceptual
System

: S
/—) rovendpna /-- N ‘o-—«\
(= B)

“dris
.74 i |

N8 1P PARIS

Case-Study

Adaptive Cruise Control System

ACC Vehicle

¢ Clearance ———
Time gap=clearance/vehicle speed Target Vehicle

s il

TELEFDM
2aris

.74 i |

N8 1P PARIS

2 hands-on tutorials with foundations in Multi-Paradigm Modeling

Case Study: Adaptive Cruise Control System (ACCS)

1a: Modeling the ACCS using OpenModelica

Rakshit Mittal!, Hans Vangheluwe!

1b: Verifying ACCS Safety Requirements using UPPAAL

Rizwan Parveen?

2a: Modeling and Analyzing the Architecture of the ACCS
controller usin%3AADL

Dominique Blouin?, Anish Bh

2b: Synthesizing Code for the ACCS controller using RAMSES

Dominique Blouin?, Anish Bhobe3

lUniversity of Antwerp — Flanders Make, Belgium TELELON

2Telecom Paris, France u e |
W% 1P PARIS

3Institut Polytechnique de Paris, France =

model Capacitor “ldeal linear electrical capacitor”
parameter S|.Capacitance C "Capacitance”;

r1Medelica Interfaces.PositivePin p;

=oUser's Gunch Interfaces.Negative Pin n;

+ 53 Blocks Sl Voltage v “Voltage drop betvween pins'. —

R—17 : squaton . o Lo

¢ ggﬁf:amcs 0= p.i+ni; N[TS
z V= pav-nv; . -

1 DNE‘:'OO I end Capacitor: —— ey

cMItxamples

=MBasic : \Q\ N
* Ground y ’ . ‘ :
<>Ressstor |. \ !
~Conductor <o __,!_j__ BT 1
~=-Capacitor |
-—Inductor i) j
= Saturatnglnductor A /A A A | /1
s Transformer 2l VV VV \4
M _Transformer !
= Gyrator 0.0%0 a.051 0.082 :'.:s;.

MODELICA
U e

V2. 1P PARIS

Dok mantatgivars Dakumantnemn Dokumanthateckning

Lund Institute of Technolagy REPORT LUTFDZ/ (TFRT-1015) /1-226,/ (197d)

Handlaagars HArendabateckning
Earl Johan Astrdm
Hilding Elmgvist

Drokumanttizel ach undertitsl

A Structured Model Language for Large Continuous Systems

Flaforat (asmomandeagh

A model language, called DYMOLA, for continuous dynamical systens

is proposed. Large models are conveniently described hierarchically
using a submodel concept. The pordinary differential equations and

algebraic eguations need not be converted to assignment statements.

There 1s a concept, cut, which corresponds to connection mechanisms

of complex Lypes, and there are facilities to describe the connec-—
tion structure of a system. A model can be manipulated for different
purposes such as simulation and static calculaticons. The model

egquations are sorted and they are converted to assignment statements
using formula manipulation. A translator for the model language

is also included.
Faforat skrivet aw
Author

Féralag 1l y tierligars nyskelord

nonlinear systems, compiler, permutations, graph theory

Kiassitikatlonssystem och -kigseler)
Indextarmarn (anga killa)
Mathematical models, Simulation languages, Computerized simulation,
Wonlinear systems, Ordinary differential eguations, Compilers.
(Thesaurus of Engineering and Scientific Terms, Eng. Joint Council,USA)
Omiding Svrign biblicgrafiska upooifter
226 pages
Sprik
English

Sakratasiuppgifor 155M 1SBMN

Dukumeniat kan arhbilas (o mottagurens uppgiftar
Department of Automatic Control
Lund Institute of Technoclogy
P O Box 725, 5-220 07 Lund 7, Sweden

TELEFDM
2aris

Pris

=] =
Blankett LU 11:25 1976—07 -‘ﬁﬁEI

IP PARIS

S8
=10

DORUMENTDATABLAD entig 518 62 1012

Human effort

General purpose
languages
e.g. FORTRAN

Problem Analysis

intuition & physics

Model equations

Simulation model

Numerical
algorithms

Execute numerical

algorithms

Specialized numerical

mathematics
e.g. NAG, MATLAB

Problem Analysis

intuition & physics

Model equations

Simulation model

Numerical
algorithms

Execute numerical
algorithms

State-based
simulation
e.g. Simulink

Problem Analysis

intuition & physics

Model equations

Simulation model

Numerical
algorithms

Execute numerical
algorithms

Physical modeling
environments
e.g. MapleSim

Problem Analysis

intuition & physics

Model equations

Simulation model

Numerical
algorithms

Execute numerical
algorithms

Moo 1andwo)

Numerical experts

Math experts

Modeling experts

Engineers

Math experts

Modeling experts

Engineers

Modeling experts

Engineers

Engineers

Adapted fromagraphicpresented by A. Ohata.
Second Plant Modeling Consortium meeting, Berlin, Feb 21, 2008 TELECOM

Paris

B

N8 1P PARIS

Multi-Domain

Modeling m

MODELICA

http://www.modelica.org

Mechanics

Axisl Axisz

g . —
R L] Electric)
eference Bearing

=+ Angle-

SEensor

5

PID cControl System

TELEFDM
2aris

CETET
this slide from Peter Fritzson's Modelica tutorial W 1P PaRIS

http://www.modelica.org/

Multi-Domain Visual Acausal

Modeling Hierarchical
Component
Keeps the physical Modeling
structure
Ramp1
Torquet Inertia Spring1 Inertia2
Acausal model Va g W A A L.
(Modelica) e T 5= = ==
o " \-Pi BN 1§ omega n % pm;h/_} /‘+>J
Constant2 Divide 1 Integrator 3 Integrator 1
Causal
bIOCk-based > % phi2 Constant1
m od e I Integrator 2
(Simulink) S e i
Constant “ s omegaz
Divide Integrator Scope
T TELECOM

SRR
this slide from Peter Fritzson's Modelica tutorial W3 1P PaRIS

Paulo Carreira - Vasco Amaral - Hans Vangheluwe
Editors

Foundations of
Multi-Paradigm
Modelling for

okin i
il 19“ o @ Springer Open

Fritzson P. (2020) Modelica: Equation-Based, Object-Oriented Modelling of Physical Systems.

In: Carreira P., Amaral V., Vangheluwe H. (eds) Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems. Springer, Cham.

https://doi.org/10.1007/978-3-030-43946-0_3

Modelica
ys

https://modelica.org/documents/ModelicaTutorialld.pdf

OpenModelica

https://openmodelica.orqg/

Modelica by Example

by Dr. Michael M. Tiller

https://mbe.modelica.university/

TELECOM

Paris

gy

N8 1P PARIS

https://doi.org/10.1007/978-3-030-43946-0_3
https://mbe.modelica.university/
https://modelica.org/documents/ModelicaTutorial14.pdf
https://openmodelica.org/

The tool:
OpenModelica Connection Editor (OMEdit)

File Edit Wiew SSP

ERg B=l~

Libraries

? |E OpenModelica
? ModelicaServices

? n Complex
> 7% Modelica
> |E CPSloTPackage

Simulation

OMEdit - OpenModelica Connectien Editor

Data Reconciliation Sensitivity Optimization Debug Tools Help

OMEdit -

OpenModelica Connection Editor

Recent Files Latest News & Events

No recent files found.

£» 2024-05-20 Openmodelica v1.23.0-dev.beta.1 released!

£» 2024-03-12 American Modelica Conference 20241

=L oo L o

Clear Recent Files Reload

For more details visit our website www.openmodelica.org

Messages <

All Notifications ~ Warnings Errors

[1] 14:58:52 Scripting Notification
Automatically loaded package Complex 4.0.0 due to uses annotation from Modelica.

[2] 14:58:52 Scripting Notification
Automaticallv loaded packace ModelicaServices 4.0.0 due to uses annotation from Modelica.

& welcome | of Meodeling = Plotting " 4 Debugging

Download the tool from:
https://openmodelica.org/#

OMEdlt ’

5 : o ¢\

'-‘\

\

The resources:

download from
https://nextcloud.rakshitmittal.net/s/iY4gRkgkW9yx8WB

or request a pen-drive!

“daris
U' —hed i |

‘M. |P PARIS

https://openmodelica.org/
https://nextcloud.rakshitmittal.net/s/iY4qRkgkW9yx8WB

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

. Programming: procedural code (function/algorithm)
. Equation-based (a-causal) modelling

. Behind the scenes: numerical approximations

. Object-Oriented modelling

. Libraries and the MSL

. Controller Modelling
. Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

TELECOM
Paris

.74 i |

N, 1P PARIS

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

. Programming: procedural code (function/algorithm)

. Equation-based (a-causal) modelling

. Behind the scenes: numerical approximations

. Object-Oriented modelling

. Libraries and the MSL

. Controller Modelling

. Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

TELECOM
Paris

.74 i |

N, 1P PARIS

The motor should not move too fast!
So the input to the motor controller is limited to [-300, 300].

Simulate the function using the test-bed. Modify the | L [SRR AT T
parameters and observe simulation output. Y

Part1_Procedural
LimitFunction

LimitModel
function LimitFunction

input Real u "input";
input Integer K_high "high limit";
input Integer K_low "low limit";
output Integer result;

algorithm

result := if u > K_high then K_high elseif u < K_low then K_low else integer(u);
end LimitFunction;

model LimitModel
parameter Integer k_high "high limit";
parameter Integer k_low = -k_high "low limit";
Real u "input";
Real y "output”;
equation
y = LimitFunction(u, k_high, k_low);

end LimitModel;
U_ mHET
Q‘:t‘, IP PARIS

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

. _Programming: procedural code (function/algorithm)

. Equation-based (a-causal) modelling

. Behind the scenes: numerical approximations
. Object-Oriented modelling
. Libraries and the MSL

. Controller Modelling
. Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

TELECOM
Paris

.74 i |

N, 1P PARIS

The position of the lead car can be described by differential equations.
Three different kinds are already provided.
Simulate them, and then also create your own custommodel!

model LeadCarContextlLinear
Real x(start = 10@);
equation
der(x) = 5;
end LeadCarContextlinear;

model LeadCarContextExp
Real x(start = 10);
equation
der(x) = x;
end LeadCarContextExp;

model LeadCarContextHarmonic
Real x(start = 10);
Real v(start = 9);
equation
der(x) = v;
der(v) = -x;
Il x(t) = A*sin(t) + B*cos(t)
f/ v(t) = A*cost(t) - B*sin(t)
end LeadCarContextHarmonic;

CPSIoT24ModelicaTutorial
Part1_Procedural
Part2_Equation

LeadCarContextLinear
LeadCarContextExp

LeadCarContextHarmonic

“dris
.74 i |

N, 1P PARIS

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

. Programming: procedural code (function/algorithm)
. Equation-based (a-causal) modelling

. Behind the scenes: numerical approximations

. Object-Oriented modelling

. Libraries and the MSL

. Controller Modelling

. Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

TELECOM
Paris

.74 i |

N, 1P PARIS

Simulate the harmonic equation with different settings:

Simulation 1 model LeadCarContextHarmonic
solver : dassl Real x(start = 1@);
stop-time: 20s Real v(start = 0);
step-size : 0.02s equation

dexr(x) = v;
Simulation 2 dexr(v) = -x;
solver : euler I x(t) = A*sin(t) + B*cos(t)
stop-time: 20s {1/ v(t) = A*cost(t) - B*sin(t)
step-size : 0.5s end LeadCarContextHarmonic;

Which simulation is correct?

Notice the numerical in/stability.
Stability => The parametric plot should be bounded.

So, it not just about having the correct model, but also using the correct solver settings! -l ' =TT

P

<

@, D,
10
CPSloT24ModelicaTutorial mins

Part1_Procedural

Part2_Equation
LeadCarContextLinear
LeadCarContextExp

LeadCarContextHarmonic

TELEFDM
2aris

N, 1P PARIS

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

. Programming: procedural code (function/algorithm)
. Equation-based (a-causal) modelling
. Behind the scenes: numerical approximations

. Object-Oriented modelling

. Libraries and the MSL

. Controller Modelling
. Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

TELECOM
Paris

.74 i |

N, 1P PARIS

Object-Orientation: concepts like classes/types, instances, encapsulation, specialization

resistor capacitor
— —LF L I I o,
R=1@ kOhm C=1@ nF
sineVoltage
= Ll

An exemplar low-pass RC circuit

v |E Part3_0O_CBD

« == LimitBlock
LeadCarContextLinearBlock
LeadCarContextExponentBlock

LeadCarContextHarmonicBlock

JE IntroRCLPF

TELECOM

Paris

g fis]
@ IP PARIS

type
type

type
type

type

Electrical Types

Time = Real (final quantity="Time", final unit="s");
ElectricPotential = Real (final quantity="ElectricPotential",
final unit="V");
Voltage = ElectricPotential,;
ElectricCurrent = Real (final quantity="ElectricCurrent",
final unit="A");

Current = ElectricCurrent;

“dris
.74 i |

N 1P PARIS

Electrical Pin Interface

connector PositivePin "Positive pin of an electric component"

Voltage v "Potential at the pin'";
flow Current i "Current flowing into the pin";

end PositivePin;

TELECOM

= ZT

N 1P PARIS

Electrical Port

partial model OnePort
"Component with two electrical pins p and n
and current i from p to n"
Voltage v "Voltage drop between the two pins (= p.v - n.v)";
Current i "Current flowing from pin p to pin n";
PositivePin p;
NegativePin n;
equation
V =p.V - n.v;
O =p.i+ n.i;
i=p.i;

end OnePort;

TELECOM

= ZT

N 1P PARIS

Electrical Resistor

model Resistor "Ideal linear electrical resistor"

extends OnePort;
parameter Resistance R=1 "Resistance";
equation

R¥i = v;

end Resistor;

TELECOM

= ZT

N 1P PARIS

What is the meaning behind the connections between these re-usable blocks?

How is this meaning extracted?

resistor capacitor
—={__Jo ——
R=10 kOhm C=1@ nF
sineVoltage
AR
.)[Lr
N,
ground

model IntroRCLPF

Modelica.Electrical.Analog.Basic.Resistor resistor(R(displayUnit = "kOhm") = led)
Modelica.Electrical.Analog.Basic.Ground ground annotation() ;
Modelica.Electrical.Analog.Basic.Capacitor capac1tOI{C(dlsp1ayUn1t = "nF") = le-8)

Modelica.Electrical.Analog.Sources.SineVoltage sineVoltage(V = 2, f = 100000) ann
equation

connect(sineVoltage.n, ground.p) annotation(| ...); |
connect(ground.p, capacitor.n) annotation(| ...);
connect(capacitor.p, resistor.n) annotation([...); |
connect(resistor.p, sineVoltage.p) annotation(
end IntroRCLPF;

The meaning is always: a set of Differential Algebraic Equations (DAEs) !!

They are obtained by:

1.a. expanding inheritance

1.b. instantiation

2. flattening hierarchy, construct unique names
3. expanding connect() into equations (across vs. flow)

TELECOM
Paris

4 fil

IP PARIS

U

)

Object-oriented re-use and causality

4/\/\/\/\/_

Object "resistor"

1?2

\'A | V2

R
S [E—

V1 v2?
R
|

y]?/\/\ M M V2
R

V1i-V2=R1

1=(V1-V2)/R

V2 =V1-R1

V1=V2 + R’

TELECOM

= ZT

N 1P PARIS

CPSloT24ModelicaTutorial

> Part1_Procedural Recall that we created at least 4 different models.
W Part2_Equation
LeadCarContextLinear Can we now extend those models so that they can be re-used

LeadCarContextExponent like blocks in the Modelica graphical syntax?

LeadCarContextHarmaonic

e |E Part3_OO_CBD

- Irn ez As an example, you will find (in part 3) the corresponding blocks for the four

L2 |0 e AR AT B e models from the previous parts of the tutorial.

LeadCarContextExponentBlock

LeadCarContextHarmonicBlock

You should look at the textual syntax of the models, and then use
similar techniques to make the block for your custom model, that
you created in part 2.

“dris
.74 i |

N, 1P PARIS

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

. Programming: procedural code (function/algorithm)
. Equation-based (a-causal) modelling

. Behind the scenes: numerical approximations

. Object-Oriented modelling

. Libraries and the MSL

. Controller Modelling
. Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

TELECOM
Paris

.74 i |

N, 1P PARIS

v 777 Modelica
> ﬂ UsersGuide

. ComplexMath

> \[3| Blocks

» [ml ComplexBlocks

h Clocked

2 P+ StateGraph

» i1 Electrical

» Al Magnetic
MSL - m'odelica Standard Library } u ME-Chamcg

2 |B=1| Fluid

) Media

» it Thermal

> "\ Math

>

>

3 Utilities

T Constants

> |1 | Icons

» kg| Units

— m A
W 1p paris

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

. Programming: procedural code (function/algorithm)
. Equation-based (a-causal) modelling

. Behind the scenes: numerical approximations

. Object-Oriented modelling

. Libraries and the MSL

. Controller Modelling

. Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

TELECOM
Paris

.74 i |

N, 1P PARIS

— P K e(r)

+ t
—Setpoint—b@f Error» 1 K I e(r)dr Process [—Output—»
i}

PID Controller

Closed-loop system: better stability L D g e
o

P control by itself is unable to get rid of the steady-state error, which results in a permanent offset.

The steady-state error is eliminated by the integral component, which gradually accumulates the error and modifies the
controller’s output. However, it may result in instability and oscillations from excessive integral activity.

The derivative component forecasts the inaccuracy in the future. By increasing the derivative gain (Kd) by the error’s
derivative over time, it produces a damping effect. By doing this, the response is smoothed down and oscillations and

overshoot are lessened.
TELECOM

Paris

U_ .74 i |
ﬁ IP PARIS

https://www.wattco.com/2024/05/pid-controller-explained/

Given what you have learnt today, and considering that all blocks are provided.
Can you now make the following PID control loop model of the robot to

simulate its behavior?

desired_distance

W

k=8.1

feedback

ego_car

Fforward_car

D G

intervehicular_.

TELECOM

= ZT

N 1P PARIS

rem.
) time

controller ego_car
e CPSloTZ4ModelicaTutorial
> Part1_Procedural —', S —
> Part2_Equation z
+|P| Part3_oo_cep /
| = LimitBlock

: LeadCarContextLinearBlock

: LeadCarContextExponentBlock

‘f forward_car

: :LeadCarCDntextHarmunicBIDck

IntroRCLPF

D S

intexrvehicular_ ..

feedbagk

e Partd_PIDControl

PIDController
Plant

What are the best values for Kp, Ki, Kd ??

TELECOM
. . . Paris
Remember these values, you will use them in the 2nd tutorial !

e

N, 1P PARIS

Equation-Based Object-Oriented Modelling of the Physics, with Modelica

. Programming: procedural code (function/algorithm)
. Equation-based (a-causal) modelling

. Behind the scenes: numerical approximations

. Object-Oriented modelling

. Libraries and the MSL

. _Controller Modelling

. Extra time: Hiding IP: Composition of Functional Mockup Units (FMI)

TELECOM
Paris

.74 i |

W@ 1P PARIS

problem: full-system analysis
(also when IP protected)

Overture Env. <
1]
£3--.. v
=~ Controller :
L I Oy a BlenSor
MATLAB ™ '
FASIMULINK Body

solution: combine sub-system simulators

aka co-simulation

TELECOM

Paris

o , et di |
Claudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, Hans Vangheluwe

Q‘:t‘, IP PARIS

Co-Simulation: A Survey. ACM Comput. Surv.51(3): 49:1-49:33 (2018)

https://dblp.uni-trier.de/pers/hd/t/Thule:Casper
https://dblp.uni-trier.de/pers/hd/b/Broman:David
https://dblp.uni-trier.de/pers/hd/l/Larsen:Peter_Gorm
https://dblp.uni-trier.de/pers/hd/v/Vangheluwe:Hans
https://dblp.uni-trier.de/db/journals/csur/csur51.html#GomesTBLV18

co-simulation: how? (when IP protected)

Overture

@ ~
'I Controller

y

MATLAB
Body

Env.

A

SIMULINK

Control
Simulator

Model
r= 1 =

Solver

I Controller I g

——P—

A9)blender

diial ettt S BUENDER SENSOR SIMULATION
i

Body Simulator

Env. Simulator

Model v

Body

Solver

>)

Model

Solver

<+

Env. & o) blender

TELECDM

.74 i |

Q‘:, IP PARIS

co-simulation: how? (when IP protected)

Model Solver

'

Controller

Solver

@blender”

Orchestrator / Master

Solver
Master algorithm

Minimally, Constrained Stable Switched Systems and Application to Co-Simulation

C Gomes, RM Jungers, B Legat, H Vangheluwe 2018
IEEE Conference on Decision and Control (CDC), 5676-5681

erall

Accelerator

2
,:
)

£ g8

0 5 10 15
Car speed (km/h)

al

200
.OGM
0

geg

0 5 10 15

Drive torque (reference, measured)

400
200
0

o

U’ mEIE

‘N |P PARIS

javascript:void(0)

DSblock
MSL-EXEC

Model-Solver Interface
Simulator-Environment Interface

experimentation
environment
(e.g., parameter
input,
visulisation)

or
simulator
"bus"
(e.g., HLA)

or

SIMULATOR = solver + model

SOLVER(s)

MODEL
dynamics

MODEL

symbolic
information

Martin Otter and Hilding EImquist.
The DSblock interface for exchanging model components. Eurosim '95 Simulation Congress. pp. 505- 510. 1995.

Henk Vanhooren, Jurgen Meirlaen, Youri Amerlinck, Filip Claeys, Hans Vangheluwe, and Peter A. Vanrolleghem.

WEST: Modelling biological wastewater treatment. Journal of Hydroinformatics , 5(1):27--50, 2003.

“dris
U_ .74 i |
@ IP PARIS

m' Functional
] Mock-up

Interface

The leading standard to exchange dynamic
simulation models

The Functional Mock-up Interface is a free standard that defines a container
and an interface to exchange dynamic simulation models using a
combination of XML files, binaries and C code, distributed as a ZIP file. It is
supported by 180+ tools and maintained as a Modelica Association Project.

© Why FMI [B Complete Package 3.0.1 | ~] [B Specification3.0.1 | ~] [B Implementers' Guide]

https://fmi-standard.orqg/

“dris
.74 i |

N 1P PARIS

https://fmi-standard.org/

1111 T « . - = ix M r
f,.p.1nital values (a subset of {X,.X,.¥,.V,.m,})

Enclosing Model -

time

discrete states (constant between events)
parameters of type Real, Integer, Boolean, String
inputs of type Real, Integer, Boolean, String y
all exposed variables

continuous states (continuous between events)

outputs of type Real, Integer, Boolean, String
event indicators

External Model (FMU instance)

3
t l X.m.z

Solver

o
N X < cT3™

“dris
.74 i |

N 1P PARIS

Co-simulation: how?

Gu, B., & Asada, H. H. (2001). Co-simulation of algebraically coupled dynamic subsystems. In American Control
OrCheStrator Conference, 2001. Proceedings of the 2001 (Vol. 3, pp. 2273-2278 vol.3).

http://doi.org/10.1109/ACC.2001.946089
Control P Env. _
Simulator h Simulator |
7 . Control
Body Simulator Simulator Body Simulator Env. Simulator

simulateUntil(t+H, ...)

getOutput(...)

setinput(...)

simulateUntil(t+H, ...)

getOutput(...)

setinput(...)

simulateUntil(t+H, ...)

o
t:= t + H [7'('II‘IS
U_ .74 i |

@ IP PARIS

2 hands-on tutorials with foundations in Multi-Paradigm Modeling

Case Study: Adaptive Cruise Control System (ACCS)

1a: Modeling the ACCS using OpenModelica

Rakshit Mittal!, Hans Vangheluwe!

1b: Verifying ACCS Safety Requirements using UPPAAL

Rizwan Parveen?

2a: Modeling and Analyzing the Architecture of the ACCS
controller usin%3AADL

Dominique Blouin?, Anish Bh

2b: Synthesizing Code for the ACCS controller using RAMSES

Dominique Blouin?, Anish Bhobe3

lUniversity of Antwerp — Flanders Make, Belgium TELELON

2Telecom Paris, France u e |
W% 1P PARIS

3Institut Polytechnique de Paris, France =

1O}

Understanding Model-driven Design
with UPPAAL Model Checker

AGENDA

- Introduction to the basic concepts of modelling and model

checking.

- Get to know basic features of the UPPAAL model

checker.

- [llustration of UPPAAL tool through a few

examples in the context of the formal verification

Thursday, June 13, 2024 @

GUTLINE

1. The role of Model Checking in design validation

2. The UPPAAL Tool

Introduction

Building model and formalizing properties
Verification: writing queries

An example

o Wiy

Installation instructions

3. References

Thursday, June 13, 2024

OUTLINE

1. The role of Model Checking in design validation

2. The UPPAAL Tool

Introduction
Building model and formalizing properties
Verification: writing queries

An example

o W N

Installation instructions

3. References
Thursday, June 13, 2024 @

|.WHY DESIGN VALIDATION?

* Design Validation is important step to ensure design
correctness at very early phase of SDLC

 Traditional Techniques:
— Simulation (on an abstraction or a model of the system)
— Testing (often conducted on the actual product once built)

 Formal Methods (aimed at exhaustive validation)

- different formal approaches are used for different kind of requirements.
- The complexity of these methods made them only accessible to specialists
(mathematicians).

— Model Checking (MC)
— MC is the first technique that is truly accessible for “normal” engineers

— Applicable to (finite-state concurrent systems —> automatic) sequential circuits,
communication protocols, software... a wider spectrum of applications

Thursday, June 13, 2024

PERFORM 3 STEPS FOR VERIFICATION

First, build a model for the system (abstract), in the form of a set of automata (called as
Network of automata in UPPAAL)

Second, write the important properties to be verified using expressions, e.qg. temporal
logic (in case of UPPAAL, it is TCTL)

Third, use the model checker (a tool like UPPAAL) to generate the space of all

possible states and to exhaustively check whether a property hold in each and
everyone of the possible BEHAVIOURS of the model.

4)

=2 Model Yes

Checker [=> or

(UPPAAL) No (counterexample)
Queries O

> For each query

Thursday, June 13, 2024

Formal Model

OUTLINE

1. The role of Model Checking in design validation

2. The UPPAAIL Tool

Introduction
Building model and formalizing properties
Verification: writing queries

An example

o W N

Installation instructions

3. References
Thursday, June 13, 2024 @

edge

2. UPPRAL rocation ~WSTART | END

* Enable verification via automatic model- checking.
* It consists of three main parts:

— a Graphical editor (run on the user's computer) and
— asimulator

location
/

T4 Lppass 0

— averifier BRG] s e ik Ve Took’ Dt il)
lcons > EE&I ¢AAARE <Y
All constitutes to a Tabs —"—— e
model-checker i
engine (by default SR T)
executed on the ‘ -CL
same computer as : o
the user interface, T}fe Editor Initial_State Final_Stats
Window

but can also run on
a more powerful
Server) Pasfiisn e rigsiio

UPPAAL 500

Thursday, June 13, 2024 @

THE SIMULATOR WINDOW

T4, uPPAAL - O x|
File Edit View Tools Options Help
— e] -] - A o
Ao Plaa s we - >y
Editor Symbelic Simulator Concrete Simulator Verlfier
] H - : ¥ ¢
IEnabFEd Transitions Constraints Process
l
[}
1 Reset &@ Initial_State Final_State
Simulation Trace
| (Initial_State)
Process —
{Final_Stale)

Process
4l Prey MNext 7 Replay
& Open * save * Random
Slow Fast

Thursday, June 13, 2024 @

EDIT THE MODEL AND VERIFY

An UPPAAL model is built as a set of concurrent processes.

Each process is graphically designed as a fimed- aufomaton.

o LUERAA
File Ech Tools Optuons Healp

L Wew
EWX0 A8 B @ < 2>V

Editor Symbaolic Simulator Concrete Simulator Verifier

|
B Project o Mame: Template | Parameters:

i~ Declarations
-5,

. Systemn declarations

Initial_State Final_State

S .

Pasition Description

UPPAAL 5.0.0

Thursday, June 13, 2024 @

THE VERIFIER WINDOW: INSERT QUERY

?1, UPPAAL
File Edit View Tools Options Help
W i 1 | | =) = oy i ‘;'
EJ = ;| g e G § %ﬁ‘% i ,;/'\‘e/

Editor Symbolic Simulator Concrete Simulator Verifier

v y
B Project y Name: Template | Parameters:

e =) Declarations

| System declarations

START END

===

Position Description

upPAAL 5.0.0
[

Thursday, June 13, 2024 @

OUTLINE

1. The role of Model Checking in design validation

2. The UPPAAL Tool

Introduction
Building model and formalizing properties
Verification: writing queries

An example

o W N

Installation instructions

3. References
Thursday, June 13, 2024 @

2. MODELLING WITH UPPAAL
Synchronisations: Guard and channels

Edges are annotated
with selections,
guards,
synchronisations

and updafes

Using channels two (or
more) processes to take a

transition at the same time.

Declare the channel (¢)
under declaration using
keyword chan.

One process will have an
edged annotated with ¢!/
(send) and the other(s)
process(es) another edge
annotated with c? (receive)

*7 UPPAAL

File Edil Wiew Tools Opbons Help _ _
= . - ke | - 4. ’-‘1 |
|,_.- m-'f i 4 s Y oy & h | ﬁ:g "‘q;:" ,r// V

Editor Sumbolic Simulator - Conreete Simulator Verifiar

i
B Profect J Name: | Process] | Pammeters:

15 Declaratlons

+- %, [

= |5 System declarations

a 5 &)
o—o
S TART END

Posikion Description

Process? s not a sknickure

LIPFAAL 5.0.0

Thursday, June 13, 2024 @

SYNCHRONISATIONS : GUARD AND
CHANNELS +« —

ke cfit Jiow Options el
|._| iﬁ 1 G & & QE @ ale ,-‘,';" N |

Editor Symbalic Simulator Concrete Simulator Verifier

"
It:, Project y Mame: Process? @ Paemeters:

. Declarations
#-T Processl

— Ifataspecific instant there are | *REER
several possible ways to have a
pair ¢/ and c?, one of themis
non-deterministically chosen
during model checking.

Position Description

|Unknown identifier; Process

UIPPAAL 5.0.0

Thursday, June 13, 2024 @

COUNTEREXAMPLE AND DIAGNOSTIC TRACE

This example will show:
A.how an error in model
can be traced.

B. How to formalize query
in TCTL.

« Verifying Properties:

1. to ensure that the model
behaves as the system we
wanted to model.

2.to detect some errors in the
original design)

Formalize properties:

Ex. In a network protocol, if
a message is sent, it will be
eventually received.

L LPRAN
File Edit View Tools Options Help
= . n
L . :i ® Q& e A
Editor Symballc Simulztor Concrete Simulater Verifier
7 7 3
B Project | Memeo: Processl | Par@maelors:
-/ Declarations
+-%7, CliTel
i & %7, Pracess?

b | Gystem declarations

%
)
@
START END
Position Desorption

UPPARL 5.0.0

UPPAAL understands Timed Computational Tree Logic (TCTL). That means it 1s required to
formalize those properties in TCTL (similar to LTL/CTL)

Thursday, June 13, 2024 @

UPDATE AND GUARD

A guard is an expression (a
condition/action on the
transition).
: File Fdit View Tonlz Cpfions Help
It uses the variables and DX 6Pada w7
C].DC]:{S U'f the mﬂd&l 11 Drder Fetter gymbalic Smulator Concrete Simulator Verifier
tG indicate When the traI'lSitiDI'l -1.;: DiTs :H Ploce global declarotions hare.
is enabled or not. v |

zhan hi, bye; I
HE- ?-Eda Processt

#-T0, processz
— Note that several edges may [System declarations

be enabled at an specific
time but only one of them will
be fired = leading to
different potential
interleavings

¥, UPPAAL - O x

An update is an expression
that is evaluated as soon
as the corresponding | —

edge 1s fired. This i ot

evaluation changes the

state of the system.

UPPAAL 3.0.0 31

Thursday, June 13, 2024 @

EDGES

* Three different kinds of synchronizations:
— Regular channel (leading to Binary Synchronization)
— Urgent channel: time cannot lapse
— Broadcast channel: all these transitions are enabled at receiving ends.

c?
start end start end

00 006

— The update expression on an edge synchronizing on c! is executed
before the update expression on an edge synchronizing on c?

31 Thursday, June 13, 2024

STATES (AKA LOCATIONS)

* States can be of three different types (that can be assigned
by double-clicking on the location):
— Initial
— Urgent (time is not allowed to pass when a process is in an urgent location)

— Committed (When a model has one or more active committed locations,
no transitions other than those leaving said locations can be enabled)

— Normal (all the rest)

Thursday, June 13, 2024

A RECOMMENDATION ON MODELING

 The state space grows very quickly with the model complexity
(state space explosion). It is necessary to:

— It is better to model at suitable level of abstraction of a system.

— Identify important properties to model and properties that are essential to be
verified.

* More specifically:

— The use of committed locations can reduce significantly the state space, but it
can possibly take away relevant states.

— The number of clocks and variables

This is rather an “art” (model checking may not be so “perfect”
but it helps a designer to think)

31 Thursday, June 13, 2024

OUTLINE

1. The role of Model Checking in design validation

2. The UPPAAL Tool

Introduction
Building model and formalizing properties
Verification: writing queries

An example

o W N

Installation instructions

3. References

Thursday, June 13, 2024 ({21}

VERIFICATION AND TYPES OF QUERIES IN UPPAAL

The UPPAAL query language (TCTL) can be classified as:

[1] Reachability properties. A specific condition holds in some state. Expressed as
: E<> p ‘“Exists eventually p”

[2]. Safety properties. A specific condition holds in all the states of an execution path.
E[]1 p ‘Exists globally p” (p holds for all the states of the path)

A[l p “Always globally p” (For each (all) execution path p holds for all the states
of the path)

[3]. Liveness properties. A specific condition is guaranteed to hold eventually (= at
some moment)

A<> p “Always eventually p” (p holds for at least one state of the path)
q—->p “qalways leads to p”
[4]. Deadlock properties. If a deadlock is possible or not in the model

A[] not deadlock

Thursday, June 13, 2324 @

OUTLINE

1. The role of Model Checking in design validation

2. The UPPAAL Tool

Introduction

Building model and formalizing properties
Verification: writing queries

An example

Installation instructions

o A~ W D =

3. References

Thursday, June 13, 2024 ((5)

MOVEMENT OF A CAR

1. Avoiding Obstacle
2. Maintaining safe distance from the vehicle in front

To avoid obstacle, there are two actions:

1. Slow down the speed of the car
2.1 If 1t 1s movable obstacle, wait till the obstacle is removed from

the path and resume moving.
2.2.1f it 1s non-movable obstacle, wait and divert the path.

In a advanced model, we can add path planning/shortest part, etc.
algorithm from the state of “divert”.

Thursday, June 13, 2024 @

|. AVOIDING OBSTACLE

Obstacle
— DIVERT
| e e L
; ®
| M
s | i,
| ,@ CHECK_0BJ
l o7
. HALT | RSER .
- e | Ltk i
@it getestedi | -
MOVING '\1\,@5' s
NO_OBSTACLE [
i
SRt object_removed 0BSTACLE JDETECTED
MOVING_OBSTACLE ~~ IMMOVING_OBSTACLE

= The model shows two automata: MyCar and Obstacle

= Assume my car is in moving state. It keeps moving until it detects an

obstacle.

= In the event of a obstacle detected, my car has two options:
= A.To wait for obstacle to move away from the path and then continue moving

on the path

= OR B. My car chooses a different path and resume moving.

Thursday, June 13, 2024 @

2. MAINTAINING SAFE DISTANCE FROM THE
VEHICLE IN FRONT

= We add one automaton in the existing model to represent the operation of
a front car.

= Let’s assume if this front car slows down its speed, maybe during a heavy
traffic, that means the distance between my car and front car will be
reduced and not in a safe range.

= There is a minimum safe-distance which my car has to maintain from the
front car. Therefore, whenever the front car reduces the speed, my car
checks if it is moving on a safe distance or not.

= [f not, my car control its speed (reduce) and go to safe moving only when
safe distance is recovered (that represented by FrontCar’s normal moving
state).

Thursday, June 13, 2024

2. MAINTAINING SAFE DISTANCE FROM THE VEHICLE

IN FRONT

MOVING_OBSTACLE

"“ (g e I')O

MyCar
b A
I’L‘nﬁf’EED_E{]HTRﬁL curr_dist < safe_dis HALT
I TaglN A 0 AR ODh7ecT detectTer
I . vy - -~ aliusk datentel ..
|. rr!_,.."' ‘n““-“ UI"J;‘-F _leqﬁHLE l’!__-"' HU‘I.IIIIHE
curr_dist=curr_dist+2 g P R
CUrm dist<if :"-...-r-' :
B -aa DIVERT
Obstacle FrontCar
. DIVERT
e AR e R s _@ MOVING SPEED_DOWN
:.. + E caf b ..Jll
= - =) CHECK_0BJ
i L urr_dist
! - : curr_dist=curr_dist+1
i —"'.r!"'.- L |
i 2y |
i - |
ki = i .
ect detecte
NO_OBSTACLE :
|
t_removed! OBSTACLE DETECTED

Thursday, June 13, 2024 @

VERIFICATION

= Check for deadlock

= Check that MyCar should not be in MOVING state when obstacle
detected.

= Check MyCar always maintain safe distance from the FrontCar

Thursday, June 13, 2024

OUTLINE

1. The role of Model Checking in design validation

2. The UPPAAL Tool

1. Introduction

2. Building model and formalizing properties
3. Verification: writing queries

4. An example

5. Installation instructions

3. References

Thursday, June 13, 2024 @

LEARNING OBJECTIVE

= How to build model with UPPAAL?

= [dentifying important properties and formalizing them.

= Verify important properties of the model.

Task to be performed:

« Follow the UPPAAL installation instruction given on next slide.

= Download the pre-build model of the car.

= Improve this model by implementing task #2: maintaining safe
distance

= Write Safety properties and verify them

Thursday, June 13, 2024

INSTALLATION INSTRUCTIONS

Make sure you have the Java version installed as per latest UPPAAL requirement.

— E.qg.: www.java.com/es/download/manual.jsp

Go to the UPPAAL page: www.uppaal.org

Click on the download tag and then on the link Uppaal 5.0 (current official release)

Y e e =l Fittat eI sadlala:ttaalfat-Ta [Pl ttat &= b= - 1}
LI:NK NUIPSs.//Uuppddl.ord/ aAowilodds/ H+uppddiu.v

Fill the (academic) license agreement form. Click on “Register & Download”. You
may need to provide your university email id to get this license.

Unzip files

To run UPPAAL double-click the file uppaal.jar

Thursday, June 13, 2024

REFERENCES

some of the following references are used for creating
this presentation and some useful for further reading

+ BSlide Credit: Julidn Proenza, Systems, Robotics and Vision Group. UIB. SPAIN

« UPPAAL (available at www.uppaal.org)
— ATutorial on Uppaal, 17 Nov 2004 by G.Behrmann, A. David, and K. G. Larsen.
— UPPAAL Online Help

*+ Model Checking:

- Behrmann, G., David, A., Larsen, K.G. (2004). A Tutorial on UPPAAL. In: Bernardo, M., Corradini,
F (eds) Formal Methods for the Design of Real-Time Systems. $SFM-RT§ 2004. Lecture Notes in
Computer Science, vol 3185. Springer, Berlin, Heidelberg.

- Bouyer, Patricia (2008). “Model-checking Timed Temporal Logics”. In: Electronic Notes in

Theoretical Computer Science 231. Proceedings of the 5th Workshop on Methods for
Modalities(M4MS5 2007), pp. 323—-341. ISSN: 1571-0661.

Thursday, June 13, 2024 @

